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ABSTRACT 

This report updates the status of the Landing Craft Air Cushion Vehicle (LCAC) Navigator Selection System 
prediction algorithm. The last revision took place at the end of 1997. With the receipt of new training data, the 
prediction algorithm was changed in June 2000 to take advantage of these new data. Some rough estimates of the 
new attrition rate and the rejection rate due to the selection system may be made on the basis of the new data. The 
attrition rate is estimated as 17.24% and the rejection rate as 36.96%. The failure rate during training appears to be 
about 39.13%. If the 'rejection rate of about 37% is acceptable, then the LCAC Navigator Selection System can 
reduce the attrition rate from around 40% to around 17%. These estimates are based on rather small numbers and 
therefore are subject to substantial revision as more data accrue. The prediction of a success or failure for any 
given candidate by the LCAC Navigator Selection System is built on the foundation of statistical decision theOlY 
(SDT). The selection system is trying to make a decision about a candidate whose composite score on the test 
battery is known but whose training outcome is unknown. There is then, by definition, some uncertainty about the 
training outcome for this candidate. Uncertainty and the problem of making decisions in an uncertain world is the 
province of probability theory and SDT. The only mathematically self-consistent way that has been found to treat 
uncertainty is through probability theory. From the basic axioms of probability theory, one is able to construct a 
generally accepted framework dealing with uncertainty called the Bayesian approach. One·ofthe core concepts 
within the Bayesian approach is the predictive probability density function This paper presents some numerical 
examples of how a Bayesian predictive density can be calculated for the LCAC Navigator Selection System. 
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INTRODUCTION 

This report updates the status of the Landing Craft Air Cushion Vehicle (LCAC) Navigator Seleotion System 
. prediction algorithm. The last revision (Biggerstaff et. al [1]) took place at the end of 1997. With the receipt of 
new training data, the prediction algorithm was changed in June 2000 to take advantage of these new data. 

Selection systems may ~ roughly divided into two parts. The first part concerns the choice of tests to be used 
in the test battery. TIre tests chosen are the ones that tap into some of the fundamental cognitive and psychomotor 
skills necessary for success in training. These tests are validated by administering the test battery to an initial set 
of subjects. All subjects tested during the validation stage enter training and their training outcome is recorded. On 
the basis of the validation stage, a prediction algorithm is developed that will be used in the opemtional stage. Here 
candidates are actually selected to enter training or are rejected based on the scores they achieve on the test battery. 

The second part of a selection system comes into play with the dynamic updating of the original prediction 
algorithm as the tmining results come in for those candidates who were selected to enter training. The candidates 
who were rejected by the selection system obviously cannot provide any training data, but by a set of reasonable 
assumptions (see Blower. [2]) they can be allocated to a guessed pass or fail during tmining. A policy decision was 
made by the LCAC training community to admit into training all candidates no matter what their score on the test 
battery. This policy worked to our benefit as it was now not necessary to perfonn as many allocations of rejected 
candidates into either actual training attritions or gmduations. With these new data, the prediction algorithm can be 
revised under the assumption that it will do a better job than the previous algorithm 

The frrst part of this paper concerns itself with the data used to update the prediction algorithm. Composite 
scores are listed for all 46 LCAC Navigator candidates who have taken the test battery and ~ompleted training. 
Next, we show how these composite scores are calculated. Numerical examples are given for a typical candidate 
who is a predicted pass and for a typical candidate who is a predicted fail as based on their test battery scores. The 
new weighting coefficients for each of the eight tasks making up the test battery are documented. At the end of the 
first part of the paper, 2 x 2 classifIcation matrices are used to show the performance of the algorithm in terms of 
the nwnber of correct and incorrect predictions. We illustrate how changing the cut-off score in order to meet 
different policy needs impacts the IUlmber of correct and incorrect predictions. 

the second part of the paper is more theoretical in nature and lays out the statistical justifIcation for the LCAC 
Navigator Selection System. It is important to emphasize that the system makes optimal decisions given a fixed 
set of test battery scores. The only way that it (or any other competing system) could make better decisions is if it 
had better information from different tests. We can make this claim because the LCAC Navigator Selection System 
is based on the theoretical foundations of Statistical Decision Theo:ry. 

It turns out that the prediction algorithm that is ultimately derived from Statistical Decision Theory depends on 
probability distributions. Such probability distributions capture the uncertainty surrounding data and pammeters in a 
statistical model. A large and ever-growing majority of experts in the statistical community has determined that the 

. best way to deal with this kind of uncertainty is through probability theo:ry. The corpus of knowledge the statistical 
community has accumulated over the years to process probabilities is called the Bayesian approach. We employ a 
rigorous Bayesian approach in developing the prediction algorithm for the LCAC Navigator Selection System. 

One of the core components of the prediction algorithm is the mtio of the likelihood of obtaining a test battery 
score (the composite score, for example) given that the candidate really comes from the PASS group to the 
likelihood of obtaining the same composite score given that the candidate really comes from the FAlL group. From 
the Bayesian (i.e., correct) perspective, this likelihood mtio is a ratio of predictive probability densities. We 
present in some detail how the Bayesian predictive density is derived for the LCAC Navigator Selection System 

A computer program was written to numerically evaluate the integrals involved in the two predictive densities. 
Numerical examples are given showing how this program works to produce these densities needed to form the 
likelihood ratio. Finally, we employ the program to compute that particular composite score that serves as a cut-off 
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score for the newly revised prediction algoritlun. This cut-off score detennines whether a candidate is a predicted 
fail or a predicted pass. 

DATA FOR UPDATING THE PREDICTION ALGORITHM 

Listing of Composite Scores 

The composite score for each LCAC Navigator candidate is fonned by a linear combination of the eight tests 
comprising the selection test battery. The weights are derived from a linear discriminant analysis of two groups. 
The two groups are the known successes in the initial LCAC Navigator training curriculum (labeled as the PASS 
group), and the known attritions during training (labeled as the FAIL group). At the time of this report, there were 
NPass = 28 in the PASS group and NFail = 18 in the FAlL group. Table 1 shows the composite score for each 
member of the PASS and FAIL group. The scores are listed in ascending order. At the bottom of the table is the 
sample mean and the sample standard deviation of the composite scores for each of the two groups. The sample 
mean of the PASS group is +0.599 with a standard deviation of .912, while the sample mean of the FAlL group is 
-0.932 with a standard deviation of 1.125. The discriminant analysis creates these composite scores suc:b. that the 
means are as far apart as possible, both groups have theoretical standard deviations of 1.00, and the composite 
scores for each group are distributed according to a Normal probability distribution. 

Comput~tion of the Composite Scores 

The composite scores, as mentioned in the previous section, are computed as a linear swn of eight test scores 
multiplied by the corresponding eight weighting coefficients. These weighting coefficients are the unstandardized 
canonical discriminant function coefficients as reported by the SPSS Discriminant Analysis module. A constant is 
then added to this sum for the final composite score. The composite score is therefore computed according to 
Equation (1) 

g 

Composite score = L CiSi + Constant. 
i=l 

(1) 

The coefficients Cl to Cg, together with the tests they weight, are listed in Table 2. The first colwnn gives the 
subscript attached to the coefficient, Gi, and the score, Si, on the ith test. The better the performance on the 
Absolute Difference, Dichotic Listening, Stick with DLT, and Time Estimation tasks, the better the composite 
score. The better the performance on the Manikin test, the worse the composite score. The percentage correct on 
the CVT test does not appear at this point to impact the composite score .too greatly. Quicker RTs when answering 
the CVT questions results in a higher composite score, while slower RTs to reading the CVT questions also results 
in a higher composite score. Thus, it appears that success in navigator training is correlated with taking time to 
understand a problem and then responding quickly once the problem is understood. The Absolute Difference task 
and the Time Estimation task remain the two most influential indicators of success in training. 

Some speculation on why the Manikin test and the percentage correct on the CVT do not show better 
weighting coefficients is that these tests· are more prone to improvement as information is passed from candidate to 
candidate about the content of the test. The more you know about the nature of these tests, the more you can 
prepare yourself beforehand. There is little one can do to prepare for the other tests even if one knows the general 
nature of the test. We. will, therefore, consider the effects of removing the Manikin and percentage correct CVT 
scores from the algorithm in tlie future. 

Tables 3 and 4 present the calculation of the composite score for two candidates who have not yet entered 
training. The first candidate, shown in Table 3, is a predicted fail because his composite score is -1.187, which is 
below the cut-off score of -.218. The second candidate, shown in Table 4, is a predicted pass because his 
composite score is +0.840 which is above the cut-off score. The determination of the cut-off score is deferred to a 
later section of the paper. 
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Table 1: A listing of the composite score for each member of the PASS and FAlL groups sorted in ascending order. 

Number PASS FAIL 

1 -0.956 -3.800 

2 -0.844 -2.419 

3 -0.651 -2.054 

4 -0.387 -1.792 

5 -0.206 "":1.425 

6 -0.139 -1.377 

7 ·-0.062 -1.329 

8 -0.031 -1.059 

9 -0.016 -0.873 

10 +0.041 -0.838 

11 +0.279 -0.500 

12 +0.498 -0.338 

13 +0.555 -0.219 

14 +0.761 -0.189 

15 +0.828 +0.064 

16 +0.856 +0.262 

17 +0.861 +0.532 

18 +0.898 +0.585 

19 +0.938 

20 +1.001 

21 +1.016 

22 +1.042 

23 +1.062 

24 +1.305 . 

25 +1.308 

26 +1.590 

27 '" +1.785 

28 +3.437 

Sample mean +0.599 -0.932 

Sample standard deviation +0.912 +1.125 
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Table 2: The coefficients, c;, of the composite score for the newly revised prediction algorithm as determined by 
discriminant analysis. 

, Subscript Test Coefficient 

1 Absolute Difference +.514 
2 Percentage Correct on CVT -.069 
3 RT to CVT Questions -.181 
4 RT to CVT Answers +.322 
5 Dichotic Listening Task +.187 
6 Manikin -.267 
7 Multi-Task Stick with DLT +.152 
8 Time Estimation Task +.561 
9 Constant -.401 

Table 3: The calculation of the composite score for an LCAC navigator candidate who is a predicted FAIL. 

Subscript Test Score Coefficient Multiplication 

1 Absolute Difference -0.2846 +0.514 -0.146 
2 Percentage Correct on CVT 0.4250 -0.069 -0.029 
3 RT to CVT Questions 1.0006 -0.181 -0.181 
4 RT to CVT Answers 0.5729 +0.322 +0.184. 
5 Dichotic Listening Task 0.5712 +0.187 +0.107 
6 Manikin 204700 -0.267 -0.659 
7 Multi-Task Stick with DLT 0.1992 +0.152 +0.030 
8 Time Estimation Task -0.1638 +0.561 -0.092 
9 Constant 1.0000 -0.401 -0.401 

L c;Si + Constant = -1.187 

Table 4: The calculation of the composite score for an LCAC navigator candidate who is a predicted PASS. 
, . 

Subscript Test Score Coefficient Multiplication 

1 Absolute Difference 0.6999 +0.514 +0.360 
2 Percentage Correct on CVT 1.0500 -0.069 -0.072 
3 RT to CVT Questions 0.4927 -0.181 -0.089 
4 RT to· CVT Answers -0.0741 +0.322 -0.024 
5 Di~hotic Listening Task 0.5712 +0.187 +0.107 
6 Manikin -0.7100 -0.267 +0.190 
7 Multi-Task Stick with DLT 0.3087 +0.152 +0.047 
8 Time Estimation Task 1.2896 +0.561 +0.723 
9 Constant 1.0000 -0.401 -0.401 

L c;Si + Constant = +0.840 
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Classification of Correct and Incorrect Predictions 

Table 5 presents a 2 x 2 table showing the breakdown for the two. cprrect and the two incorrect predictions for 
a given cut-off score. A teclmically rigorous derivation of the cut-off score will be presented in a later section, but 

Table 5: The 2 x 2 classification table of the correct and incorrect predictions for 46 candidates using the revised 
algorithm with a cut-off score of -.218. 

Prediction 
PASS FAIL 

Actual PASS t 24 4 28 
FAIL 5 13 18 

29 17 46 

for now we can simply note from Table 1 that setting the cut-off score at -.218 results in a good trade-off between 
the two kinds of errors. Anyone obtaining a cut-off score below -.218 is a predicted failure and conversely, 
anyone scoring above -.218 is a predicted pass. This particular cut-off score yields nine errors. Four errors occur 
when we predict fail and the candidate actually passes, and the other five errors occur when we predict a pass and 
the candidate actually fails training. These numbers can be verified by looking back at Table 1. 

Some rough estimates of the new attrition rate and the rejection rate due to the selection system may be made 
on the basis of the data in Table 5. The attrition rate is estimated as 5/29 = 17.24%, and the rejection rate as 
17/46 = 36.96%. The failure rate during training appears to be about 18/46 = 39.13%. If the rejection rate of 
about 37% is acceptable, then the LCAC Navigator Selection System can reduce the attrition rate from around 
40% to around 17%. Because these estimates are based on rather small numbers, they are subject to substanti;l1 
revision as more data accrue. 

Furthermore, raising or lowering the cut-off score will implement different policy decisions. To take two 
extreme examples, suppose that it is desired to either maximize the number of correct predicted passes, or to 
maximize the number of correct predicted failures. For the first case of maximizing the number of correct 
predicted passes, a cut-off score placed at a composite score of -1.00 will result in the classification table shown 
in Table 6. The trade-off for getting all the predicted passes right is that although the attrition rate in training 
deteriorates from 17.24% to 10/38 = 26.32%, the rejection rate decreases from 36.96% to 8/46= 17.39%. 

Table 6: Maximizing the number of correct predicted passes by setting the· cut-off score at -1.00. 

Prediction 
PASS FAIL 

Actual PASS 

t 
28 0 28 

FAIL 10 8 18 
38 8 46 

, 

For the second case of maximizing the number of correct predicted failures, a cut-off score placed at the 
composite score of +0.586 will result in the classification table shown in Table 7. The trade-off for getting all the 
predicted failures right and bringing the attrition rate down to 0% is that the rejection rate deteriorates from 
17/46 = 36.96% to 31/46 = 67.39%. These two examples illustrate why, in most cases, a cut-off score in the 
middle of these two extreme cut-off scores, as illustrated in Table 5, engages a reasonable trade-off between 
lowering the attrition rate and raising the rejection rate. 
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Table 7: Maximizing the number of correct predicted failures by setting the cut-off score at +0.586. 

Actual PASS 
FAIL 

STATISTICAL DECISION THEORY 

Prediction 
PASS FAIL 

15 13 
o 18 

15 31 

28 
18 
46 

The prediction of a success or faiHll'e for any given candidate by the LCACNavigator Selection System is built 
on the foundation of statistical decision theory (SDT). SDT is thoroughly explained in the context of personnel 
selection in Blower [3]. Mter the theory has been developed, two main components are revealed in the decision 
process. These are 1) the likelihood ratio of the composite score for a new candidate, and 2) the costs of a wrong 
decision and the probability of success or failure before the selection system was implemented. These elements are 
labeled by £( x) for the likelihood ratio and by /3 for the costs and prior probabilities. The likelihood ratio reflects 
the extent to which the test battery can discriminate between successes and failures on the basis of test scores, 
while /3 represents a variable cut-off score whose placement.is determined by those costs and prior probabilities. 

The prediction algorithm is based on these two components as well as the fundamental principle of SDT. 

Make the prediction that results in the minimum average loss. 

The prediction algorithm as based on these precepts is quite simple. It says 

If £(x) ?:. /3 

Then PREDICT PASS 

Else PREDICT FAIL 

The likelihood ratio is the ratio of the probability density function for the composite score obtained by the 
candidate on the test battery und~r the two possible training outcomes, pass or fail. In symbols, this likelihood 
ratio is 

£( ) = P(DN+lIPass) 
x P(DN+lIFail) . 

(2) 

The subscript N + 1 on the data symbol is used to indicate that there exists N cases where test data and training 
outcome are known. These are the subjects who provided the validation sample. The N + 1 st candidate provides 
test data, but his or her training outcome is unknown. Therefore, the subscript N + 1 refers to all new candidates 
that the test battery is classifying as a predicted Pass or Fail. Pass or Fail appears to the right of the conditioned 
upon symbol in Equation (2) to indicate that one of these is assumed true. Thus, the composite score obtained by 
this candidate could come from one of two different probability density functions. 

The ratio of these two numbers is compared to /3. Imagine that these two numbers are the y-ordinates from two 
Normal probability density functions (Pdf). For an efficient selection system, these two probability density 
functions are separated by a large margin. If the means of these two distributions are far apart (and they have the 
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same standard deviations), wrong decisions are kept to a minimum. We will see shortly how these two 
distributions arise. 

fJ determines where the response threshold, or cut-off score, is placed. It is placed according to SDT to 
minimize the average loss. As already mentioned, fJ is a function of the costs assigned to the wrong decisions and 
the prior probabilities. A prior probability is meant to refer to the probability of passing or failing before the 
selection system was implemented. C1 is the cost of the first wrong decision to predict fail when the candidate 
actually would have passed training. C2 is the cost of the second wrong decision to predict pass when the 
candidate actually fails training. 

In symbols, then, we can write out the definition of fJ as 

fJ = C2 x P{Fail) 
C I P(Pass)' 

(3) 

Because C2 is usually more expensive than CI , the first term in Equation (3) is greater than l. P{Fail) is 
usually less than P{Pass) even without a selection system so that the second term in Equation (3) is less than l. It 
might then turn out that these two terms conspire to produce a fJ equal to l. For example, if it were true in the 
LCAC training community that C2 = $150,000, CI = $50,000, P(Pass) = .75, and P{Fail) = .25, then 

$150,000 .25 
-:c-"'-:""."...,- x-
$50,000 .75 fJ = 

1. 

In this case, the cut-off score is placed where £(x) happens to equal. I, that is, where the two pdf curves intersect. 
If a candidate obtains a composite score such that £( x) is less than 1, then he/she is a predicted fail and will be , 
rejected by the selection system. On the other hand, if the composite score is high enough such that £( x) is greater 
than 1, then the candidate is a predicted pass and enters training. It is important at this point not to confuse the 
value fJ = 1 with the value of the composite score at this fJ.The composite score for fJ = 1 is not + 1.00. We will 
later calculate the value of the composite score for fJ = 1. 

Theoretically then, (3 is determined by the costs given to CI and C2 and the known attrition rates before the 
selection system was implemented. In practice, however, it can be difficult to obtain estimates for these costs. This 
is also true for other training communities where selection systems are used. It would be extremely useful to us if 
LCAC policy makers and administrators would provide estimates of C I and C2 . (It may be difficult because no 
one has tried to gather together the policy makers to assign costs after SDT has been explained to them.) 

What seems to be done as an alternative to the theoretical calculation of fJ is to place the cut-off score at 
various locations and then gauge the reaction to the resulting frequencies of the wrong decisions. Eventually, the 
cut-off score will be maneuvered into a position where the trade-offs seem palatable. That is, the number of 
candidates wrongly rejected is balanced by the number of failing candidates correctly filtered from training. Of 
course, this method of setting the cut-off score is completely equivalent to the theoretical method. Mter having 
located an acceptable threshold by the pragmatic means just described, one can go back and flll in the values for 
Cl, C2 , P(Fail), and P{Pass) that would have given the same cut-off score. 

Perhaps the best method of all is some combination of the theoretical and pragmatic approaches. It is relatively 
easy to construct a "what-if' spreadsheet-like program that would allow policy makers to shift back and forth 
between the two views (or show them simultaneously).1 Interacting with such a program should make the task of 
establishing a cut-off score a more rational undertaking. 

IThe author has written a couple of prototype programs in Visual Basic that do this. 
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THE PREDICTIVE DENSITY FROM BAYESIAN THEORY 

After substituting for the values of L(x) and (3, the prediction algoritlun now looks like the following: 

If 
P(DN+l I Pass) O2 P(Fail) ---',---'--'---'- > - x ---"--'-
P(DN+l I Fail) - 0 1 P(Pass) 

Then PREDICT PASS 

Else PREDICT FAIL 

The right-hand side of the algorithm does not present any mathematical difficulties. The only difficulties are ones 
of policy. The left-hand side, however, presents some interesting statistical issues. 

The selection system is trying to make a decision about a candidate whose composite score on the test battery 
is known but whose training outcome is unknown. As explained earlier, this is what is meant by DN+l. There is 
then, by defInition, some uncertainty about the training outcome for this candidate. Uncertainty and the problem of 
making decisions in an uncertain world is the province of probability theory and SDT. The only mathematically 
self-consistent way that has been found to treat uncertainty is through probability theory. Froin the basic axioms of 
probability theory, one is able to construct a generally accepted framework for uncertainty called the Bayesian 
approach. One of ilie core concepts within the Bayesian approach is the predictive probability density function. 
The ratio on the left-hand side of the prediction algorithm is exactly the ratio of two predictive densities. 

The Bayesian formula for the predictive density of the composite score conditioned on a pass in training is 
given by 

P(DN+lIDN' Pass) = L P(DN+lIB,DN,Pass) P(OIDN , Pass) dO. 

An entirely analogous equation can be written for the predictive density of the composite score conditioned on 
failing in training. 0 stands for a set of parameters governing the likelihood of the data. In our case, the set of 
parameters consists of J.L and a, the mean and standard deviation, from the Normal distribution. When the 
discriminant analysis forms the composite scores, they are forced to go into a Normal distribution. 

(4) 

Within the formalism of the Bayesian approach, that is, by keeping strictly to' tlle formal symbol manipulations 
of probability theory and not worrying about how actual numbers are arrived at, Equation (4) is not too difficult to 
derive. It is merely 1) the marginalization of the joint distribution of the new composite score and the set of 
parameters 

P(DN+lIDN' Pass) = L P(DN+lJ OIDN, Pass) dO 

and 2) the use of the product rule on the term inside the integral in Equation (5) 

P(DN+l' OIDN, Pass) = P(DN+110, D N, Pass) P(OIDN, Pass). 

Because subjects provide independent data, Equation (4) can be shortened to 

P(DN+1IPass ) = L P(DN+lIO, Pass) P(OIDN, Pass) dO. 

(5) 

(6) 

(7) 

The integral in Equation (7) consists of two terms. The fIrst term is the likelihood of the new data, the 
composite score, for the candidate who is to be classilled. The second term is the posterior probability of the set 
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of parameters as conditioned on all the available data from the N subjects who do have both composite scores and 
training outcomes. These two terms are multiplied for every value that e can assume and then summed (integrated 
in the general case where the parameter can take on continuous values). One could regard Equation (7) as just an 
average. It is the average of all the likelihoods for the composite score as weighted by the posterior distribution of 
the parameters that determine the likelihood. 

The specifics of Equation (7) for the particular set of circumstances that present themselves for the LCAC 
Navigator Selection System need explanation. As mentioned above, the likelihood for the composite scores as they 
are derived from the discriminant analysis follows the Normal distribution. Therefore, 

{( )2} 1 1 x - /1Pass 
P( D N +1 = xl/1, U, Pass) = -J2ir exp -"2 . 

27fuPass UPaS8 
(8) 

Notice that the parameters of the Normal distribution have been substituted for e and that x stands for the 
composite score obtained by the candidate after completing the test battery. Equation (8) has been conditioned on 
the assumption that the candidate came from the Pass group. An analogous equation can be written for the other 
situation where it is assumed that the candidate belongs to the Fail group. 

The second term is the posterior distribution of /1 and u. This is available from Box and Tiao [4] as 

I - -(N+1) { 1 ( 2 ( - 2} P(/1,U DN,PasS) - kupass exp -~ 1/8 + NPass /1Pass -YPass) 
Upass 

where k is a constant, 1/ = N Pass - 1, 8 2 is the sample sum of squares, and y is the sample mean of the 
discriminant scores. Again, the posterior probability distribution conditioned on FAlL is entirely analogous. 

(9) 

A computer program was written to carry out a numerical integration of Equation (7) using the results of 
Equations (8) and (9). The region R for the integration was taken to be -4 to +4 for /1 and .7 to 1.3 for u. The 
computer iterated through the double loop for /1 and U in steps of .01. 

NUMERICAL EXAMPLE 

Suppose that a LCAC Navigator candidate obtains a composite score of +0.60 on the test battery. This is a 
score near the mean of the PASS group. Will this candidate be a predicted pass or predicted fail? To answer this 
question, fIrst calculate 

£( x) = _P-,;-( D=N_+_l_=_O_. 6_01.,-P.....,asc::-s) 
P(DN+1 = 0.60IFail) 

using the numerical approximation to Equation (7). The computer program provide the answers 

P(DN+l = 0.60IPass) = .4257 

and 
P(DN+l = 0.60IFail) = .1354. 

(Remember that these numbers are probability densities, the value of the y-ordinate for the predictive density 
function, and not probabilities.) Therefore, 

£(x) = 
.4257 
.1354 

3.14. 

To determine whether this candidate is a predicted pass or predicted fail, we need to know the cut-off score, or (3. 
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If, for the sake of this numerical example, f3 can be calculated as in the previous section, then f3 = 1. We now 
apply the prediction algorithm. 

If £(x) ? f3 

Then PREDICT PASS 

Else PREDICT FAIL 

Because £(x) = 3.14 ? 1 is true, the selection system predicts a pass for this candidate and would recommend 
entry into training. 

THE NUMERICAL APPROXIMATION FOR THE PREDICTIVE DENSITIES 

. Having seen the prediction algorithm working at the global level, we now delve into a little more detail about 
the computation of the predictive densities 

P(DNH = 0.60IPass) = .4257 

and 
P(DNH = 0.60IFail) = .1354. 

Table 8 illustrates the workings of Equation (7) to arrive at the predictive density function. Table 8 lends some 

Table 8: Some values from the computer program to numerically approximate the predictive density function at a 
composite score of +0.60 assuming the score comes from the PASS group. 

f.l G Likelihood Posterior density 

-4.00 0.7 2.39 x 10-10 1.25 x 10-268 

-1.00 1.0 .1109 3.78 x 10-21 

+0.60 1.0 .3989 1.32 x 10-5 

+0.60 0.7 .5699 3.42 x 10-6 

+0.60 1.3 .3069 6.43 x 10-7 

+0.60 0.9 .4433 2.01 x 10-5 

insight into how the value for the predictive density function conditioned on PASS, 

P(DNH = O.60IPass) = .4257 

was arrived at. The f'Irst two columns give the values of the two parameters of the Normal distribution, f.l and G. 

Within the program, f.l varies from f.l = -4.0 to f.l = +4.0 in increments of .01; a varies between the limits of .7 
and 1.3, also in increments of .01. The third column is the likelihood of DNH = +0.60 given whatever parameter 
values are specilled in the f'Irst two columns. For the f'Irst row, then, colunm 3 contains the value of the likelihood, 

P(DN+1 = +0.601f.l = -4.0,0' = .7, Pass). 

The final colunm lists the posterior density function for the specified value of the parameters in the first two 
columns. For the first row, colunm 4 contains the value of 

P(f.l = -4.0, a = .7IDN , Pass) 

and is computed from Equation (9). 
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The likelihood value for a composite score of +0.60 if J-t were to equal-4.0 and a were to equal .7 is an 
extremely low value of 2.39 x 10- 10 . This is simply the same calculation that one would make in computing a 
z-score. If the true mean is at -4.0 with a standard deviation of .7, then a score of +0.60 is over 6 standard 
deviations to the right of the mean. The y-ordinate (pdf value) of the Normal curve at 6 standard deviations from 
the mean must be very small. 

The subsequent rows in Table 8 offer an illustration of the change in the likelihood and the posterior density as 
J-t and a are altered. Row 2 shows what happens when J-t is eventually changed within the computer program to 
-1.0 and a, as well, is eventually iterated to a value of 1. Now, intuitively we know that a composite score of 
+0.60 must be closer to a true mean of -1.0 with a standard deviation of 1 as compared to the conditions in row 
1. It is now less than 2 standard deviations away from the mean Therefore, the y-ordinate (pdf value) of the 
Normal curve must be larger at this value of J-t and a. The value of .1109 confirms this increase. 

In row 3, J-t is eventually changed to J-t = +0.60 and a will recycle to 1 at some point at this setting of J-t. If 
the composite score exactly matches the mean, tllen the y-ordinate must take on its maximum value for a given a. 
The mean is the highest point of the· Normal curve. For a = 1, this pdf value is easy to calculate: 

pdf(x ~ +Ml) ~ ~u exp { -H x ~ ~)'} 

_. 1_ exp {-!(.60 - .60)2} 
V2i 2 

1 
= . In.:: exp(O) 

v21T 

1 
.j'ii 

.3989. 

This calculation verifies the output of the computer program for the likelihood given in row 3. 

Row 4 shows that it is possible to obtain an even higher value for the likelihood. If a is smaller than 1, 
(a = .7 in Row 4), then the likelihood increases to a value of .5969. Two more typically high values for the 
likelihood, and the parameter values associated with these likelihoods, are shown in the fifth and sixth rows. In 
Table 8, only six computations are shown. In the computer prog:ram. 800 x 60 = 48, 000 separate likelihood and 
posterior density computations· were petformed. 

Given that we have all these likelihoods, what do we do with them? According to the predictive density 
formula. of Equation (7), we have an integration involving these likelihoods. An integration is the same as 
calculating an average with respect to a probability distribution. In the predictive density formula, that probability . 
distribution is the posterior distribution 

P(J-t, aiD N, Pass). 

" 

That is why we have also calculated the posterior pdf for every value of J-t and a according to Equation (9). 
These are the values shown in the last column of the table. These numbers indicate how much to weight the 
likelihood in calculating the average. Parameters values like J-t = -4.0 and a = .7 have an astronomically low 
posterior pdf (2.01 x 10-268) because they are extremely unlikely to have arisen from the PASS group as based on 
the past data. Therefore, these parameter values lend an almost infInitesimal weight to their particular likelihoods. 
In essence, likelihoods like that in row 1 are excluded from the average. 

The Bayesian approach always includes an the information we have available. The posterior density function is 
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where the prior data containing both composite scores and training outcome are included into the prediction for the 
composite score of a new candidate. We know how likely, or unlikely, various values of J.L and a are based on the 
past data, DN. Equation (9) dictates that the posterior density depend upon both the distance of the sample mean, 
y, from J.L and the sample standard deviation, s, from a. Because 

YPass = .5989 and SPass = .9123, 

values of the posterior density at parameter values like J.L = -4.0 and a = .7 must be very small. 

The f"mal column of Table 8 shows that the posterior density becomes progressively larger for the values of J.L 
and a supported by the past data. The parameter values like J.L = -1.0 and a = 1 become more likely given the 
past data, and parameter values like J.L = +0.60 and a = .9 become the most likely of all because they match the 
past data very well. These parameter values weight the average of the likelihood so that likelihood values such as 
2.39 x 10-10 are not counted at all, but likelihood values such .3989 are weighted heavily. When all 48,000 
weights multiply all 48,000 likelihoods, they are summed and then divided by the sum of the weights. The 
resulting average value of the likelihoods is .4257 as given above. 

Table 9 illustrates exactly the same points for P(DN+1 = +0.60IFail). The first row lists the same parameter 

Table 9: Some values from the computer program to numerically approximate the predictive density function at a 
composite score of +0.60 assuming the score comes from the FAIL group. 

J.L a Likelihood Posterior density 

-4.00 0.7 2.39 x 10- 10 2.01 X 10-82 

-1.00 1.0 .1109 2.04 x 10-5 

-0.90 1.1 .1413 2.23 x 10-5 

-0.95 1.2 .1444 1.78 x 10-5 

-0.96 0.9 .0987 1.25 x 10-5 

-0.93 1.1 .1379 2.25 x 10-5 

values as row 1 of Table 8 to illustrate that the likelihood value listed in Table 8 remains the same for the same 
parameters. It must remain the sanle because the composite score for the candidate does not change, and the 
likelihood only depends upon the composite score's relationship to the given J.L and a. What does change is the 
posterior distribution of J.L and a given the different sample data from the FAIL group. For the FAIL group, the 
sample mean and sample standard deviation are 

YFail = -.9316 and SFail = 1.1252. 

Therefore, the weights for the likelihoods over all the parameter values will change and result in a different 
average likelihood. The next five rows of Table 9 concentrate on the more probable parameter values for the FAIL 
group. This small sample of highly probable likelihoods is seen to be in the range of about .10 to .15 with the 
actual average as computed by the program of 

P(DN+l = +0.60IFail) = .1354. 

CALCULATING THE CUT-OFF SCORE 

What does j3 = 1 correspond to in terms of the composite score? In other words, what is the value of the 
cut-off score so that we can make predictions about candidates directly without having to compute L(X)? What 
value of DN+l will make L(X) = I? Or equivalently, 

P(DN+l =?IPass) = P(DN+l =?IFail). 
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Through an iterative process, the computer program for predictive densities found that composite score where the 
densities conditioned on PASS and FAIL were exactly equal. If the composite score is equal to -0.218, then 

P(DNH = -0.218Ipass} = P(DNH = -0.218IFail) 

and£(x} = l. 

Therefore, the cut-ofI score can be placed at -0.218 for /3 = l. This was, in fact, the cut-off score used to 
construct Table 5. We want to re-emphasize the point that this cut-offscore is appropriate only for a specific set of 
costs and prior probabilities. If these should change, then the cut-off score would change as well. 

For example, we arrived at /3 = 1 by arbitrarily letting C2/C1 = 3 and P(Fail}/P(Pass) = 1/3. If, contrary to 
these assumptions, the ratio of prior probabilities is closer to 

P(Fail) .40 

P(Pass} .60 

2 

3 

as we commented on earlier when discussing the data in Table 3, then this would argue for moving the cut-off 
score upwards to /3 = 2, assuming that the costs have remained invariant. 

What has been the impact of allowing for uncertainty in the parameters? If we had just calculated a cut-off 
score based on the sample means of the PASS and·FAll.. distributions, then the cutoff-score would have been 
placed midway between these two means for /3 = 1 (Blower [3]) . 

Cut -off score 
. 5989 + (-.9316) 

2 

-.1664. 

allowing for uncertainty in the parameters /-L and (1 has displaced the cut-off score slightly downwards to -0.218. 
The predictive density curves are a little bit flatter than Normal curves erected over the sample means. They are 
flatter because they had to take account of many parameter values when constructing the likelihood for a new 
score, while the Normal curves just assumed a true likelihood at the sample values. Thus, where the predictive 
curves intersect will be at a composite score a little lower than for the Normal curves. 

SUMMARY 

A firm statistical foundation has been laid down for the LCAC Navigator Selection System. It is based on 
Statistical Decision Theory with the probabilities required by SDT provided by the Bayesian approach. The ratio 
of likelihoods within SDT turn out to be a ratio of Bayesian predictive densities. The predictive density was 
derived from the basic axioms of probability theory, the sum rule and the product rule. For the specific case treated 
here, this involved the integration of a normal density for composite scores times the posterior probability density 
for the two parameters of the normal density. A computer program was written to numerically integrate the 
predictive density conditioned on the Pass group and the predictive density conditioned on the Fail group. When 
the costs for the wrong decisions are specified and the prior probabilities for passing and failing are filled in, a 
decision to admit into training can be made for every new LCAC candidate. These decisions are optimal in the 
sense that they result in the lowest possible average cost. 
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